Multiplex real-time single nucleotide polymorphism detection and quantification by quencher extension.
نویسندگان
چکیده
Multiplex quencher extension (multiplex-QEXT) is a novel closed tube single-step method for detection and quantification of several single nucleotide polymorphisms (SNPs) simultaneously. The principle of multiplex-QEXT is that 5' reporter-labeled probes are 3' single-base-extended with TAMRA dideoxy nucleotides if the respective SNP alleles are present. TAMRA can serve as either an energy acceptor (quencher-based detection) or donor [fluorescence resonance energy transfer (FRET)-based detection] for a wide range of different reporter fluorochromes. The extension can therefore be recorded by the respective reporter fluorescence change. We evaluated multiplex-QEXT, analyzing four different SNP loci in the Listeria monocytogenes inlA gene. Probes labeled with the reporters 6-FAM, TET, VIC, and Alexa Fluor 594 were used. Responses for the fluorochromes 6-FAM, TET, and VIC were detected by quenching (decreased fluorescence), while the response for Alexa Fluor 594 was detected by FRET (increased fluorescence). We evaluated the SNP-allele pattern in 252 different L. monocytogenes strains. Multiplex-QEXT gave a good resolution, detecting seven major and five minor groups of L. monocytogenes. Comparison with serotyping showed that multiplex-QEXT gave better resolution. We also evaluated the quantitative aspects of multiplex-QEXT. Quantitative information was obtained for all the fluorochrome/probe combinations in the sample pools. The detection limits for 6-FAM, TET and Alexa Fluor 594 were the presence of the 10% target SNP alleles (P < 0.05), while the detection limit for VIC was the presence of the 5% target SNP alleles (P < 0.05). Currently, overlap in the fluorescence emission spectra is the limiting factor for the multiplexing potential of QEXT. With the emergence of new fluorochromes with narrow emission spectra, we foresee great potential for increasing the multiplex level in the future.
منابع مشابه
Antiprimer quenching-based real-time PCR and its application to the analysis of clinical cancer samples.
BACKGROUND Nucleic acid amplification plays an increasingly important role in genetic analysis of clinical samples, medical diagnostics, and drug discovery. We present a novel quantitative PCR technology that combines the advantages of existing methods and allows versatile and flexible nucleic acid target quantification in clinical samples of widely different origin and quality. METHODS We mo...
متن کاملMultiplex quantitative PCR using self-quenched primers labeled with a single fluorophore.
Multiplex quantitative PCR based on novel design of fluorescent primers is described. Fluorogenic primers are labeled with a single fluorophore on a base close to the 3' end with no quencher required. A tail of 5-7 nt is added to the 5' end of the primer to form a blunt-end hairpin when the primer is not incorporated into a PCR product. This design provides a low initial fluorescence of the pri...
متن کاملMinor groove binder-conjugated DNA probes for quantitative DNA detection by hybridization-triggered fluorescence.
Here we describe the properties of a novel class of oligonucleotide probes capable of sensitive hybridization-triggered fluorescence. These fluorogenic probes, known commercially as MGB Eclipse probes, are characterized by having a conjugated minor groove binder (MGB) ligand at the 5'-end and a fluorophore at the 3'-end. Additionally, they have an efficient quencher moiety at the 5'-end that is...
متن کاملSNP genotyping with fluorescence polarization detection.
When a fluorescent molecule is excited by plane polarized light, the fluorescence emitted is also polarized. The degree of fluorescence polarization (FP) detected, under constant temperature and solvent viscosity, is proportional to the molecular weight of the dye molecule. By monitoring the FP of a fluorescent dye, one can detect significant changes in the molecular weight of the molecule with...
متن کاملA Microfluidic Device for Multiplex Single-Nucleotide Polymorphism Genotyping.
Single-nucleotide polymorphisms (SNPs) are the most abundant type of genetic variations; they provide the genetic fingerprint of individuals and are essential for genetic biomarker discoveries. Accurate detection of SNPs is of great significance for disease prevention, diagnosis and prognosis, and for prediction of drug response and clinical outcomes in patients. Nevertheless, conventional SNP ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioTechniques
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2006